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Microscopic approach to critical phenomena at interfaces:
An application to complete wetting in the Ising model
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We study how the formalism of the hierarchical reference thédT) can be extended to inhomogeneous
systems. HRT is a liquid-state theory which implements the basic ideas of the Wilson momentum-shell renor-
malization group(RG) to microscopic Hamiltonians. In the case of homogeneous systems, HRT provides
accurate results even in the critical region, where it reproduces scaling and nonclassical critical exponents. We
applied the HRT to study wetting critical phenomena in a planar geometry. Our formalism avoids the explicit
definition of effective surface Hamiltonians but leads, close to the wetting transition, to the same renormaliza-
tion group equation already studied by RG techiques. However, HRT also provides information on the non-
universal quantities because it does not require any preliminary coarse graining procedure. A simple approxi-
mation to the infinite HRT set of equations is discussed. The HRT evolution equation for the surface free
energy is numerically integrated in a semi-infinite three-dimensional Ising model and the complete wetting
phase transition is analyzed. A renormalization of the adsorption critical amplitude and of the wetting param-
eter is observed. Our results are compared to available Monte Carlo simulations.
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I. INTRODUCTION The extension of the HRT formalism to inhomogeneous
Effective interfacial Hamiltonians are widely used to de- systems would enable us to study the interfacial phase tran-

scribe the large-scale fluctuations that occur near surfac ftion starting from the microscopic model, without the ex-

critical phenomena such as wettifi. Of course these mod- plicit introduction of effective interfacial Hamiltonians.

els are not truly microscopic but are usually considered Va"(fwli\rlgn Qgsivzomﬁfsgex;ﬁ) pvr\;:s;f dnd tlﬁ’em ;r(:ir;tj;tr Vggzeaof
for length scales larger than some appropriate cutoff. Th P P ' y P

prevailing belief is that interfacial models may be derivedCompIGte wetting in planar geometfil]—i.e., the phase

from more microscopic approaches if the bulk degrees 0[ransmon which corresponds to the growth of an infinitely

freedom are integrated out. Needless to say, this is an exb'Ck liquid layer close to the wall when bulk phase coexist-

tremely difficult task and interfacial models still retain a ence is approached at fixed temperature. The standard fluc-

partly phenomenological status. Therefore it is interesting t#uaﬂon theory of the wetting transition, beyond the mean-

develop a genuine microscopic approach to study interfaciagglﬁl)aggg?t(i'vn;aﬂg%i'ltso(rj]ieasr?ri'r%egi&iﬂz:gg;{gquap'"ary'wave
behaviors. Effective Hamiltonians are used to describe th e

critical behavior also in homogeneous systems because they s

allow a direct implementation of renormalization graiii3) ch:f dd_lX{E[W(X)]Z’fWU(X)) : (1)
ideas. For such bulk systems, the hierarchical reference

theory (HRT) [2,3] provides a systematic way to derive an wherel(x) is a collective coordinate which represents the
effective Hamiltonian from a given microscopic modél. distance of then-3 interface from the wallW(l) is the ef-
This theory, which implements the basic ideas of the Wilsorfective interface potential which describes the effective inter-
momentum-space renormalization group for microscopicaction between the wall and the 8 interface, and is the
Hamiltonians, allows us to derive an exact hierarchy of dif-stiffness coefficient of the interface. For isotropic modgls
ferential equations describing the evolution of the free encan be identified with the surface tension, but it may also
ergy and of then-point correlation functions of the system depend on the curvature of the interface. The form of effec-
when fluctuations on larger and larger length scales are inive interfacial potentiaM/(1) depends on the range of the
cluded. This hierarchy of differential equations can bemijcroscopic interaction. In the case of short-range potentials,

closed, for example, by imposing an approximation for thefor largel it is parametrized ag5,6,8—13
pair correlation function, usually of Ornstein-Zernik®z)

form. Already at this level of approximation, the HRT shows W(I) = — Aexp(— ml/§) + B exp(—nl/§), 2

genuine nonclassical critical behavior. wherem, n are two dimensionless constants with- m. The

parameteré can be identified with the bulk correlation
length. It is important to note that the use of such an effective
*Electronic address: orlandi@pv.infn.it surface Hamiltonian can be justified only when bulk fluctua-
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tions are small—i.e., far from the bulk critical poifif]. In Il. HRT FOR INHOMOGENEOUS SYSTEMS
three dimensions, renormalization group studies of the
Hamiltonian(1) [8,10] predict that the wetting critical behav-

ior is nonuniversal depending on the value of the wetting The starting point in the derivation of HRT equations is

A. Evolution equations

parameter: the separation of the interatomic potentialr) into two
parts:
kT @ v(r) =vg(r) +w(r), (5)
w= ,
42§ wherevg(r) is the short-range repulsive part ofr). The

thermodynamic and structural properties of the system with
interaction vg(r), the “reference system,” are considered
known, at least numerically. It is also assumed that there is
no phase transition in the reference system. Instgaglis a
(mostly) attractive term, which triggers the liquid-vapor
phase transition. Using this separation and performing a Leg-
endre transformation on the grand partition function, a for-
mal diagrammatic expansion for the Helmholtz free energy
can be written to all orders in perturbation thedBj. We
implement the basic ideas of Wilson's RG approd2i]
® within such a formal perturbative expansion to study how the
§_b - (1 + E)'n(AM)’ (4) bulk and surface thermodynamic quantities evolve due to the
inclusion of fluctuations. This can be done by introducing a
sequence of intermediate potentials characterized by an in-
whereAu=u— ug is the deviation of the chemical potential frared cutoff in Fourier space, depending on a paran@ter
from the value at coexistence. The mean-field approximatiomn the HRT for(off-lattice) bulk systems this cutoff is spheri-
to an effective¢* Hamiltonian provides a value.=0 via  cal in Fourier space, thereby respecting the isotropy of the
Eqg. (4). interaction. Here we want to consider the case of inhomoge-
The three-dimensional semi-infinite Ising model is one ofneous systems in the presence of a planar wall, where only
the simplest microscopic models which may be simulated taylindrical symmetry survives in wave vector space. More-
test the RG predictions. The value of the wetting parameteover, in wetting phenomena the correlation length parallel to
w is a function of the temperature and has been theoreticallthe surfaceg;, and the correlation length perpendicular to the
estimated [12,14: »~0.8 for T,>T=0.6T.. Extensive surface¢,, are related by1,10
Monte Carlo[15] simulation studies appear to be consistent 172 _
with ~0.3 at Tg;,=0.663T; [16], a much smaller value - [In(&)I™%, d=3, (6)
than the predicted one. One possible solution of this discrep- * éus'd)/z, d<3.

:nﬁg Cbeé\;vteheenct\k/l\;a HS elxrr?]lijllt?até?:r? ;n ddtria Gin:(raoséjlljtsti:jsn tgfe nzg?gfhis relationship suggests that the fluctuations perpendicular
gnergl effective interfacial Hamiltoniafis7—2q to the wall diverge much more slowly than the fluctuations
9 i parallel to the wall. Therefore it is natural to define a sharp

The HRT, suitably generalized to deal with inhomoge-" " .~ ~. )
cylindrical cutoff [22] which prevents long-wavelength CW
neous systems, can be used to study the effects of therm(‘i‘z(itical fluctuations. Within the HRT approach, this is imple-

fluctuations beyond the mean-field behavior without refer-ment d by defining th Fint diat tentials:
ence to the CW approach and so without introducings an €d by defining the sequence ot Intermediate potentials.
external parameter. We first obtain the HRT surface evolution w(k,q), «=Q,

equation for the Ising model which is then numerically w3(k,q) = 0 k<Q
solved in the case of complete wetting in three dimensions. ’ ’
The divergence of the adsorptidhis studied when coexist- wherex is the component of the wave vector parallel to the
ence is approached and the critical amplitude is evaluatesurface andj is the component normal to the wall. The sys-
and compared to simulations. This work is organized as foltem characterized by the potentif(r)=vg(r)+w?(r) will

lows: in Sec. Il we extend the HRT approach to the case obe named th& system. FoiQ— «, v? reduces tag while
inhomogeneous systems with planar geometry. We derive thier Q— 0 the full interaction is recovered. Therefore it is
evolution equation for the bulk and surface free energy. Wenatural to look for evolution equations governing the change
also show that in the asymptotic region the HRT equationsn the physical properties of th® system as the cutoff is
reduce to the known RG approach. In Sec. Il we study comvaried. In order to derive such evolution equations, we con-
plete wetting for a lattice gas model with nearest-neighbossider the structure of the perturbative series which defines the
interactions(which is equivalent to the Ising modelWe  free energy of the model. In the perturbative diagrammatic
investigate how fluctuations modify the mean-field pictureexpansion of the free energy of tiesystemA®, every loop

by integrating the HRT surface equation. In Sec. IV wecontains one or moreb=—pw? bonds[2]. Therefore, due to
briefly summarize the most relevant results and comparéhe vanishing ofw®(«,q) for k<Q, A° is defined by the
them to the avaliable simulation data. same perturbative expansion as the full free energy of the

where &, is the true bulk correlation length which governs
the exponential decay of correlations in real sppt213.

At the critical wetting transitiorgi.e., wetting at coexistenge
the critical exponents depend on this param@@mhile at
complete wettingi.e., wetting approaching coexistendhe
critical exponents are predicted to remain mean-field-like bu
critical amplitudes are» dependent. For example, the inter-
face height grows as

)
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model, A, where eachlongitudina) momentum integration w

is limited by an inferred cutoff. The correspondence be-
tween a cutoff in the potential and a cutoff in fluctuations
(i.e., in the momentum integrations valid with the single

exception of the first, mean-field, diagram of the perturbation

PHYSICAL REVIEW E 70, 051611(2004)

hich refer to the homogeneous system without an external
potential, from the surface terms due to the presence of the
wall:

AQ= A9+ AR,

series which does not contain any loop. This contribution is

in fact discontinuous irQ because it contains just the=0
Fourier component of the attractive potent{@) which is
zero for everyQ+ 0 and finite forQ=0. However, we can
introduce a modified free energ§® which is continuous in
Q and is simply related té°:

- BAR=- AR~ %[d)(r =0) - ¢Ar =0)] f dr p(r)

1
+ E f ddrlddr2[¢(r1,rz) = ¢2Ar4,r)1p(r)p(ry).
(8)

Analogously, we can introduce the direct correlation func-
tions CS for eachQ system by functional derivation of the
free energyA® with respect to the local densipy(r). These
correlation functions are continuous @ for n=3 because
there are no zero-loop contributions in the correspondin

function is discontinuous at=Q. So we introduce a modi-

fied function which is continuous, being the second func-

tional derivative of.A? with respect to the density:

C3(a,x) = C2(q, k) + [ p(q, k) — (g, x)]. (9)

It is apparent from the definition®) and(9) that.A° andcg
coincide with the free energy and direct correlation function
of the fully interacting system, respectively, wh@a- 0. On
the other hand, in the limiQ— o these modified quantities

p(r) = py+ Ap(r),

Fg(r i) = ng(zl 28— s)]) + AFS(V 1r2),

where the two-point correlation functioﬁg(rl,rz) is the
functional inverse of €3(rq,r,)—i.e.,

J driFR(raraCRrar) ==olri=ry). (11

This differs from the known Ornstein-Zernike equation for
inhomogeneous fluids because of the inclusion of the ideal
gas terms. Note that, due to the cylindrical cutéi, has
lost the full rotational symmetry of the physical system for
every Q e (0,»). The separation in bulk and surface terms
may be inserted in the diagrammatic expansion of the total
Helmholtz free energy. We begin with the derivation of the
evolution equation for the bulk contribution to the free en-

@rgy. Only the one-loop diagrams containing “bulkS
perturbative expansion, but the two-point direct correlationO gy y P J g 2

onds alone in the diagrammatic expansion contribute to the
leading order indQ. The sum of these term can be carried
out in closed form[2] and reproduces the known random
phase formal expression

dd1k
(2’7T)d_1
)

_ VvV (d
BAZ - BAZ 5‘?:—5]2—(‘
ar
(Q,Q-8Q

XIn[1 - ¢(q,0FS(ax)].  (12)

reproduce the mean-field approximation for the free energy NiS €guation is not yet suitable for taking tAQ— 0 limit

and the direct correlation function, contrary A8 and C%,

which reduce to the reference system quantities. This sug-~

ecause it contains the discontinuous functiﬁﬁj(q,x)
1/C3.(q, ). ExpressingFS, in terms of the continuous

gests that the HRT procedure does indeed describe tHENction F5(q,«)=-1/C3,(d,«) via Egs.(9) and (11) we

growth of fluctuations on top of the mean-field approxima-
tion, as in the RG approach.

The simple relationship between the cutoff-dependen
modified quantitieg.A° andC?) and theQ-system properties
(A9 and CS) allows us to derive the evolution equations de-
scribing how.A® and CS change wherQ is decreased from
infinity to zero—i.e., when fluctuations on larger and larger

length scales are included. The perturbative expansion of the
free energy can be specialized to the case where the refer-

ence system is th® system and the perturbation potential is
vq, k) = v (g, k) — vq, k)
_Jv@w), Q-RN<xk<Q,

10
0, elsewhere, (10

where Q>0 is an infinitesimal shift in the cutoff. By sum-
ming all terms linear indQ in the diagrammatic expansion of
the free energy and taking the liméQ — 0 one obtains the
evolution equation for the free energy. Until now we have

obtain

whereKy_; is a geometric factor defined by
d4 1k
(27T)d_l

The initial condition must be imposed @t=« and coincides
with the mean-field approximation for the Helmholtz free
energy of the fully interacting system. Unfortunately, Eq.
(13) is not written in closed form because the evolution of
the free energy depends on knowledge of the two-particle
correlation functionf‘z?b(q ,Q) at a generic value of the cutoff
Q. However, we can study how the two-particle funct.'@ﬁJ
itself (or equivalentlycgb) is modified owing to the inclusion

of fluctuations by performing the same analysis leading to

BAR

\Y,

t 2

1 d
&Q ) = EKd_le_zf E?_In[l +f§b(q!Q)¢(q!Q)]1

(13

& k- Q) =Ky, Q™2

formally considered the total free energy, but for an inhomo-£g. (13). In this way we obtain an evolution equation for the

geneous system it is useful to separate the bulk quantitiepa

ir correlation function, but this equation contains the three-
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particle and four-particle correlation functions. The proce- d &(x,0)
= [ S ¢*(-q). (17

dure may be iterated to higher orders, thereby obtaining an

infinite hierarchy of coupled differential equations. This hi- 1 +¢(K'q)}—§b(K’Q)
erarchy may be truncated at the level of the first equation byote that the evolution of the surface free energy is coupled
introducing a suitable ansatz for the two-particle correlationo the bulk evolution through thae® coefficient.

function and using the compressibility sum ris] which In the general case %, # F5, the derivation of the evo-
relates the second density derivative of the free energy to th@tion equation is more involved: By introducing further sim-
zero-wave-vector limit of the pair correlation function plifying assumptions in the spirit of the local density ap-

proximation, it is still possible to obtain a decoupled

P(= BASIV) evolution equation identical to E¢16) with a slightly dif-
—.

Q — —
Caplk=0) = 2 (14 ferent coefficienia? [25]
d
Note that this equation is exact for eaGh system, it pro- a‘BDA(K) =f chgQ(q)d)(K,q)gQ(— Q). (18)

vides an extremely useful link between thermodynamics and

the long-wavelength limit of correlation functions but it is Equation(16) has been obtained by starting from an expan-

not sufficient to close the hierarchy because it does not givejon of the free energy at constant density profile: ev@ry

information about the momentum dependence§f(d,«).  system has the samér). It means that the external potential
In the derivation of the bulk evolution equation, transla-which stabilizes the density profile changes w@h In the

tional invariance allowed us to perform an analytical resum-<ase of wetting or drying this procedure is clearly artificial:

mation of the one-loop diagrams leading to Efg) without  we would rather want to study how the density profile is

specifying the form of7%,. Instead, in order to express in modified by the inclusion of fluctuations diked external

closed form the sum of the required diagrams in the expanpotential. In order to allow the change jir) when fluctua-

sion of the surface free energies, we need to specialize totns are included, it is convenient to perform a Legendre

particular form of the inhomogeneous two-point correlationtransform of the total free energ®. In this way, it is pos-

function AFS(r,r,). Therefore, it is important to understand sible to obtain the evolution equations at fixed fugacity—i.e.,

what type of fluctuations are described ®F3(r ;,r,). Let us by keeping fixed the quantity

consider the case of a wetting transition between two bulk _

phasesB and « in contact with a wall. At a temperature N2 = Blu -V,

larger than the wetting temperature and slightly off coexistwhereU(2) is the microscopic interaction between the wall

ence, the system will consist of a slab of the wetting phaseand molecules of the fluid. We first define tkodified

with densitypg, an interfacial region, and the bujk, phase.  grand free energy by

If F5,, which is the bulk correlation function of the phase,

is not equal toF4,, then AF3(rq,r,), which is defined as — Bw®= _BAQJ,f & pR(2)1(2). (19)

Fa(rq,ro)—Fo(r,—r,), describes not only the correlations in

the interfacial region, but also in the slab. In this case it i

difficult to find a suitable ansatz for the form AFS. How-

ever, in systems where the bulk correlation functions are th : _—

same for the two phases the problem simplifies Aﬁé’ just -dependent density profile is related & by

describes the interfacial region. This is precisely the case of Qo — SBw?

the lattice gas model with nearest-neighbor interactian, p(2)=- Y2’ (20)

of the Ising model due to the symmetry;=1-p,. If the ]

inhomogeneous part of the two-point correlation function deAS usual, forQ— = w® reduces to the mean-field grand free

scribes only the interfacial region, we can parametiize) ~ €nergy anh°(2) approaches the density profile in the mean-

SHere ¥(2z) is fixed to the physical value, while the density
rofile changes with the cut off wave vectd®. The

according to the standard factorized fo[&#] field approximation. From the properties of the Legendre
transform we obtain
AF(0y,Gp, ) = 92U (), (15 (&,BwQ> ) (élﬁAQ) o
whereg®(2), the Fourier transform of®(q), is usually iden- R /7y R/,

tified as the first spatial derivative of the density profile andAs a consequence, the evolution equation for the grand free
we have taken the wall perpendicular to #hexis. Using this  energy formally coincides with that of the Helmholtz free
parametrization it is possible to perform the summation ofenergy and the surface tensioR=Aw?/S obeys the evolu-
the one-loop diagrams which allows us to obtain the evolution equation

tion equation for the surface free energy: (B 1
=K1 Q?IN[1+FAQa(Q].  (22)
1<M>_M -2 |n11 + E2 Q 16 7 ?
Q\ s ) 2 Q™ inl s(Qa(Q], (16 Note that nowa® is given again by Eq(17) in terms of
g%q) andFQ(«x). Analogously to the bulk case, also surface
wherea® is guantities obey a hierarchy of coupled differential equations
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which can be closed at the free energy lef@f) by a suit-  for the pair correlation function implies that the critical ex-
able ansatz foFS(K) andg®(z). Two surface sum rules will ponenty is zero. We know that in three dimensianis not
provide the link between the free energy and the correlatiorzero, but its value is small and it is zero to first order in the
functions[1]: € expansion21] so that, in three dimensions, this is a good
approximation. Substituting this parametrization in the evo-

o h . .
_90” _ FQ=f dz[pQ(Z) _pr] - J dﬂpQ(z), (23) lution equation we obtain

- (28] Ko [
Q , e : e
- % = f dzdzAF3(z,25,k = 0) = BFX(0) ‘ f dz@)| . Q 4/Q 77(92 y
M —
(24) xIn[sz(l +u2)_a_p2< /i/ b)]

Equation(24) can be identified as a “surface compressibil-we can eliminate the explicit dependence on the cufoif

ity” sum rule while Eq.(23) constrains the form of the den- the evolution equation by another change of variable:
sity profile. It is interesting to note that these two sum rules

are sufficient to obtain a quite good description of the wet- t=-1In(Q),
ting phase transitiofi24].

b e[(2—d)/2]t

z=(pp~ Ppo)
Kg-1

B. Asymptotic equations

dt

B e
Hi(2) = - \—/(Ach— AS)E’

1. Bulk equation

In this section we show how the HRT evolution equations
describe the asymptotic regime near phase transitions. The .
standard bulk HRT with spherical cutoff in the asymptoticWhere pvc @nd Ay,; are the density and free energy at the
critical region is known to give the same evolution equation
obtained by the momentum-space RG approg;8]. Here

critical point. Using these variables the asymptotic evolution
equation becomes

we show that the introduction of a cylindrical cutoff does not IH,(2) 2-d_
modify this property of the bulk HRT equation. T dH(2) + TZH‘(Z)
In the thermodynamic states close to the bulk critical
point, Eq.(13) can be simplified. This regime is character- 1" du H"(z) + u?+ 1
ized by the growth of long-range fluctuations—that is, by the Ef_m Pl sl b (26)

divergence ofF3.(q=0,x=0) for Q—0—i.e., in the final
stages of the evolution. In order to study the critical regionwhereH’(z) andH"(z) are the first and second derivatives of
we have to extract the singular contribution to the free enH with respect taz and we set};/Q— 0 in the Q—0 limit.
ergy from the evolution equatiof13): Only a small neigh- The integration can be easily performed and we obtain
borhood of the integration domain, closegs0 andQ~0,
contributes to the singularity. In this domain we can simplify M
the argument of the logarithm due to the divergence of the ot

pair correlation function fog and x approaching zero: B V"'{'T)‘Fl]- 27)

2-d 1
=dH(2) + = —zZH@ + [H(@ +1

Q q
i(%) - KL—le—zf ¢ dg IN[F3,(Q,9)]. This equation can be analytically investigateddind —e di-
dQ\ V 2 2m mensions. The fixed point and the relevant eigenvalues pro-

=do
. . . L vide the critical exponents to first order i y=1+€/6, B
Hereqy is an arbitrary ultraviolet cutoff which is introduced =1/2-€/6. ands=3+e which coincide with the known ex-

to extract the singular contribution to the integral. Note that, + rg resultg21]. As expected, to lowest order i the

ﬂ;.'s. (laquat:jon does not contain ﬂl]?‘ mter.até)mm ;()jotenu?l ﬁxéhoice of cutoff symmetry does not modify the universal
plicitly and acquires a universal form independent of the roperties close to the bulk critical point within the HRT
specific microscopic interaction. The next step is to choose g, ooy

form for the bulk pair correlation function. As usual, we

adopt an Ornstein-Zernike form for the direct correlation .
2. Surface equation

function:
5 Q The surface evolution equation we have obtained, Eq.
9 (k) = - 1 — _b(k2+qP) + &_(‘ ,BAb) (16), depends on the form of the density profile through the
20(4.9 79 (k,q) q a2\ v ) quantity a®(x), Egs.(17) and(18), if g®(z) is taken to rep-

(25) resent the spatial derivative pR(z). Here and in the follow-
ing we assume that the shape @(2) is not affected by

where we imposed the sum rul#4) and we assumed thht  fluctuations. Fluctuations are assumed to shift rigidly the

remains finite also at the critical point. This particular ansatznean-field density profile by @-dependent amourg, iden-
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tified as the distance of the interface from the walh?(2) (- pad) Kyq 4 (- Ba) 5
=Apf(z-Ilg). This assumption can be related to the nonho- T = TQ '”(" e +bQ ) (33
mogeneity of the spectrum of fluctuations and is customary

in most studies of the wetting phenomejig10. From Eq. By means of the change of variables,

(6) we see that the fluctuations perpendicular to the

interface—i.e., the fluctuations which distort the form of the t=-1In(Q),

profile—are only weakly divergent and as a first approxima-

tion we can neglect their effect. Note that this assumption is .

not justified near the bulk critical point, where the interplay | =F< bs ) (d-3)2]t

between bulk and surface fluctuations does modify also the Kgo1 ’

form of the density profile. Our analysis is therefore valid
only away from the bulk critical point. The long-wavelength

X : i ) Beld-1t
behavior of the surface correlation functi®i@(«) is mod- VOE a?,
eled by an Ornstein-Zernike form Ka-1
PR\ L -1 . . _
F9() = [_ (Ap)z( (9(50)2> .\ bsxz} | (28 e obtain the known RG equatids,8—1Q
173
. . ——\"/(() 1 M) 1| PV
wherebg is a nonuniversal constant that tends to a finite limit “dt =(d=-DVdl) + 5(3 -d) I + > In 2 +1],
at the wetting transition and we have used the exact sum rule J a
(24): (34)
Pl- Bo? . L . L
(= Ba™) - (Ap) Ak =0), (29) where V((l) is the effective interfacial potential in the RG

approach. From this formal equivalence, we can identify the

A Bu)?
B 3 . . renormalized effective interactiovi(l) as the surface Helm-
whereAp=[dzg?(2)=(p,—pp) is the difference between the | i roq energyaR and the height of the interfadeas a

bulk density of the two phases across the interface. Becausfassure of the absorptidh The initial (i.e., bare form of

we assume to bg away frlolm bulk critical po!nt, this quantityvt(n is then given by the value @(T") at a suitable match-

is regular at wetting transition. The assumptions we m.ade thg cutoff Q=Q,< 1. The appropriate value should include
the density profile and on the surface correlation function arg, © ¢ cts”of short-wavelength fluctuatiofie., of fluctua-
similar to those u_n_derlylng the usual RG group treatment O(Erons atQ>Qy) but a rough estimate is obtained starting
the wetting transitior{1,8-1(. Note that for wetting phe- from the mean-field free energy. It is possible to show that,

nomena the critical exponentis known to be zergl,5] but in the sharp-ki P - .
) . ; p-kink approximatiofi] for the density profile of
the Ornstein-Zernike form for the surface correlation func—a continuous system, the initial form of ou(l) is given by

tion is strictly accurate only in the interfacial regipt8,19. . . . . i
Away from the bulk critical point, the asymptotic form of Eq. (2—i.e., the same used in the effective capillary-wave

the evolution equation for the surface free energy then bel_—|am|lton|an.
comes
( Q) 2 Q) L Il. LATTICE GAS COMPLETE WETTING
(- Bo Ka-1 - (=B |
B - Lle 2|n([—'82} + béQz), A. Mean field
Q 2 B

(30) In this section we consider the wetting transition in a
semi-infinite lattice gas model with nearest-neighbor interac-
where b.=by(Ap)?> and we have disregarded nonsingulartion in contact with an unstructured wall. The interaction
terms. Notice that Eq30) does not depend on the specific between the wall and lattice gas is described by an external
shape of the density profile. The asymptotic evolution equapotential u;, where the subscript=1 labels layers of the
tion (30) is in fact fully equivalent to the nonperturbative lattice gas: we consider a planar geometry with an external
“functional” RG approact{9,10. To prove this remarkable potential translationally uniform in directions parallel to the
correspondence, we introduce the surface free eraf?gly)  wall. It is convenient to introduce an interlayer interactions

by Legendre transform af?(uw): vij which collects all inter-atomic nearest-neighbor interac-
o o 0 o tions of the particles belonging to théh and jth layers,
a*(I') = o(u~) + u~T. (31)  which are assumed to be nearest neighbors. Note that there is

also a contribution;; which describes the interaction of par-

HereT is the adsorptiori23) and thenu® is such that : o . : .
ption23) " ticles within the same layer. We shall discuss in the following

o 3a(I) only the particular model for which the external potential
=T - (32)  acts only on the first layer and is attractive:
The asymptotic evolution equation c®(I") follows U =us

straightforwardly from the evolution equation o, Eq.
(30), and from the properties of the Legendre transform  and
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v, I,] nearest-neighbors layers,
vij =14, i=j, 0_—\3‘11 Tc
_ ———————
0, otherwise, —
. . . . =4 \’ 2
with u,v <0. In the mean-field approximation, the free en- 3 E
ergy Ans of the system reads I
“BAmi_ PAR 1
T——?+§% pip; bij (39 A 5 ¢
wherep; is the density of the layer, ¢;;=—fv;;, andSis the
area of the layers. The reference system is a hard-core lattice 0 r
gas:
- BA o /%
— == [A-p)In-p) +pIn(p)].  (36) = N
S i 3.
It is well known that in the mean-field approximation the
bulk critical temperature i&gT./|v|=3/2. ForT<T, there
are two stable phasesand g, which coexist forug=-3v|.

This value of the chemical potential at coexistence is not
modified by fluctuations due to the particle-hole symmetry of
the model, which also leads to a relationship between th
bulk densities of the two coexisting phasgg=1-ps. The

mean-field density profile is related to the external potential,ic pelow a characteristic wetting temperatig Notice

by thermodynamics: that the phase diagrams of the intermediate and strong sub-
d ( BAm; pi strate regimes are similar far>Tyy.
B ﬁ_Pi s |~ In 1-p, B 2 PPy (37) Mean-field theory fails to describe the roughening transi-

! tion and it incorrectly predict3g=T, [27]. Therefore, at the
wherey;=B(u—U;). This is a nonlinear equation for the den- mean-field level there is no smooth wetting transition but
sity profile which can be conveniently written as only a sequence of layer transitions; nevertheless, it is inter-

_ esting to note that in the intermediate regime for high tem-
pi = i (38) peratures the behavior &f(u) at fixed T is very similar to
1+es that of a smooth wetting transition. We numerical solve the
nonlinear mean-field density profile equati@®), with stan-

FIG. 1. Typical surface phase diagram with representative gas-
hase adsorption isotherms for strong substrate regime
u/v>1). Hereuisin unitsv andI is in units of lattice spacing.

'yi_

where

X =y + D pidi.
i~ % jP]¢]| Tw Te  Te

On general grounds, for nearest-neighbor interactions \:
T,

there are two possible scenarios depending on the value of
u/v [26], named the strong substrate regifugv >1) and

the intermediate substrate regirie/2<u/v <1). There is
also another regime forQu/v<1/2, the weak substrate

(=]

1o 0

regime, but its properties follow from those of the interme- A 8 ¢
diate regime due to the symmetry of the Ising model: they

describe the same phenomena of the intermediate regime but

on “the other side” of the coexistence lifig6]; i.e., in one 0 r
case the bulk density is, in the other case ipg. In Figs. 1 R .

and 2 we sketch the phase diagrams in the strong and inter- A
mediate regimes, respectively. Fafv>1 an infinite se-
quence of transitions occurs, corresponding to condensation
of successive monolayers. The critical temperatures of these
layer transitions approach, for high-oder multilayers, a well-
defined temperaturd&g, the roughening temperature. At a
temperature beloW isotherms for the adsorptioii show

an infinite sequence of sharp stepsas: u,. BetweenTg FIG. 2. Typical surface phase diagram with representative gas-
andT, the steps are rounded Hlitstill diverges, approaching phase adsorption isotherms for intermediate substrate regime
coexistence. Instead fou/v<1 the layer transitions no 1/2<u/v<1. Hereu is in unitsy andT is in units of lattice
longer extend to th&=0 axis but now meet the coexistence spacing.

IETH
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3 — pe0.72 (1+2) —i (39)
2.5 == B09 2 Apgb’
T whereAp is the difference between the bulk density of the
LS i two phases across the interface and welasE(Ap)™L. Near
Pk coexistencé\p=1-2p, due to the particle-hole symmetry of
------------- the system. Therue correlation lengthé, [13] can be ob-
O T tained from the Ornstein-Zernike form of the bulk correla-
93 =55 uflitl o tion we have adopted in this investigation:
N 1
1\ — TrEN-2
FIG. 3. Two absorption isotherm in the mean-field approxima- coshg,) =1+ 2(§b) J (40

tion for B=v/k,7=0.72 andB=0.9 (B.=2/3) andu/v=0.95. We

see that for low temperature the layer transitions are evident, but for 1-

high temperature the isotherm is smoqthis in unitsv andI is in (£)?= M’ (41)
units of lattice spacing. 1-68pp(1 -pp)

] . ] ] ] where &, is the second-moment correlation length, analyti-
dard techniqug28], in the intermediate regime/v=0.95 at  cally obtained by expanding to the second order the Fourier
different temperatures and we calculate the adsorption  transform of the direct correlation function. By substituting

into Eq. (39) our numerical result for the critical amplitude
r=> (pi = pp), A, we obtainw,,;=0 as expected in the mean-field approxi-
i mation.
We can also evaluate the mean-field surface susceptibility
xs defined as

Po _I S (9P _ 9
=In -6 . X___E<___ .
P [ 1- PJ oo S ou C\du du

wherep, is the bulk density obtained by

At low temperature, as previously discussed, we see a sd© obtainxs in the mean field, we differentiate the density
quence of layer transitions while at high temperature theProfile equation(37) with respect to the chemical potential:
Iayer_ transmorjs are still present but are shifted very near the _ aplop et Ipia
coexistence line. As a consequence, fheu) isotherm, B=—"7 — -B—.
shown in Fig. 3, is smooth and looks very similar to what is pi(1=pi) I I
expected in the wetting regime: The divergence close to th&his is a tridiagonal set of linear equationssn/ Ju that can
coexistence line is well represented byu) =AIn(u—u,)  be numerically solved. This route gives more accurate results
as in wetting. A fit of the data points gives a valde=0.45  than the direct numerical differentiation of the adsorption.
in a wide range of temperaturésee Fig. 4. Close to coexistence, the surface susceptibility diverges as
If we suppose that the capillary-wave effective Hamil- yo=A/Apu.
tonian describes the critical behavior of wetting phenomena, _
we can use our data on the critical amplituli¢o estimate B. HRT surface equation
the wetting parameten: After having discussed the mean-field approximation,
which defines the initial condition of the HRT equation, we
T : T : are ready to tackle the numerical solution of the HRT surface
1 equation. In this first application of the HRT approach to
inhomogeneous systems we are mainly interested in surface
fluctuations in a temperature range not too close to the bulk
critical point. In such a regime, the dependence of the surface
evolution equatior{22) on bulk quantities via the definition
(17) can be neglected. Therefore, as first step, we have cho-
sen to adopt a local density approximation ##?(«), Eq.
(18):

Ipi
-8, =B

3
3

1 2 1
05 5 >
log,g(n—p,)

d
1 a(k) = f z—qng(q)lz¢(q,K). (42)
v

FIG. 4. The logarithm plot of the adsorption isotherm in mean-In Appendix A we show how the evolution equation for the
field approximation for8=v/k,T=0.74, 3=0.70, 3=0.68, and surface tension, Eq.16), constructed for a continuum sys-
u/v=0.95. We see that in the asymptotic region the three adsorptiotfem, must be modified to be applied to a lattice system
isotherms are well approximated by straight lingss in units ofv [2,29. The evolution equation for the surface tension of the
andT is in units of lattice spacing. lattice gas in three dimensions is given by
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— 3,9 . | | | |
a(g—ga) - %Dz(Q)m[l +F{(Qa(Q)], (43)

with Q e [-1:1] and D,(Q) is the two-dimensional density
of states(see Appendix A

According to the discussion in Sec. Il A, the factft(q)
in Eq. (42) is related to the Fourier transform of the first
derivative of the density profile. This definition, however,
cannot be stricltly carried over to lattice models where the
density profile is defined only on lattice sites. Instead, we 3
parametrizedy®(z) in terms of a rigidly shifted mean-field 3 2
density profile,

0 1

T
log, (4t

FIG. 5. The double-logarithm plot ofys isotherm for
gQ(z) = p,Q(X) = pmi(Z= lQ)' (44) =v/k,T=0.72 andJ/u:O.QS.%Ne see tflat theb(éffect of fluctuatign is
wherelg is the (unknown Q-dependent position of the in- @ renormalization of the critical adsorption amplitude.
terface andp,,{(2) is an analytic interpolation of the mean
field p; obtained by fitting the discrete density profile with a paramete\y is determined via the surface compressibility
suitable continuum density profile: sum rule(24), valid for eachQ system. By use of the param-
, )] etrization (47) in the sum rule(24) we obtain the explicit

pmi(2) = l[(a+ b) + (a— b)erf( (45) relationship betweeng and the thermodynamics:
2 3

L

This form does adequately represent the actual density pro- ¢ (= 80%) _ J dzp(2) 2F (x=0) = po(1 = pp)

file by takinga equal to the bulk density arfgito the contact d(Bu)? Q ° 1-2ga%(k=0)
density p;. The width £, of the interface is only weakly (49)
dependent on the thermodynamic state and diverges logarith-

mically at wetting. As a first approximation we sgt inde- Substituting the approximation &2(«) in the evolution

pendent ofu. Instead, the position of the interfatg does  equation(43) we obtain a closed nonlinear partial differential
depend on the state and will be strongly renormalized byequation for the surface free energ§(w) at fixed tempera-
fluctuations. In factlg is easily related to the adsorptidlp,  ture. The initial condition for this equation is given by the
via the parametrizatio(4): mean-field theory. The boundary conditions are given at
A= Bo?) w | coexistgnp_e—i:e.uzﬂco where we assume that. the surface
[o=——"—"= f dd pmi(z=1Q) = ppl = Q(pl_ o). susceptibility ci_lve_rgegNettmg) a_nd aty— - vyhlc_h corre-
B 0 2 sponds to vanishing bulk density. The equation is written in
(46) quasilin_ear form by a su_itable cha_nge_of variable shown in
Appendix B. The evolution equation is then solved by a
Note that, due to the parametrizatiofd), the value oflo  predictor-corrector algorithr{30].

drops out of the definition o&?(«), Eq. (42), which then In Fig. 5 we show the logarithm of the susceptibility ver-
becomex independentsee Appendix B We parametrized sus the logarithm oft— ., Notice that the value of, at the
the surface correlation function by an OZ form, last point of the grid depends on the mesh spacing as can be
seen in Fig. 6. For this reason this value is not considered in
FO() = Po(1 = pp) (47
S 2 )
‘ f dzoR(2)| [1 —Nqa (k)] g .
0 n=5000
in terms of the unkown parametgg. When this expression
is substituted into Eq(15) we get _ sk o h
- _ (1-pp) g';
AFQ(z;, 2, 1) =§A2)§Azp) PO 48
(21,25,) =G(21)9 (Z)I—AQaQ(K) (48)
whereg®(2)=p'?(2)/|fdZ p’AZ’)|. The first term of Eq(48) 251 .
can be interpreted as a normalized function which constrains . .
the range of the correlation function to the interface—i.e., 35 e (u—f) 2.5

wherepg(2) does not vanish. The factpy(1-p,) guarantees

the correctp,—0 limit preserving the symmetry of the  EG. 6. The double-logarithmic plot of the isotherm for3
model. The chosen form oF®, Eq. (48), reproduces the =v/k,T=0.70 andu/v=0.95 for two different numbers of mesh
momentum dependence of the known random-phase apoints. We see that the number of mesh points—i.e., the grid
proximation[23] in which a?(x) plays the role of an effec- spacing—affects the value of; at the last point of the grid. The
tive interaction potential on the interface. The yet unknownline is only a guide to the eye.
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tract from our results how depends on temperature. How-
ever, our data seem to imply an increasing of the wetting
parameter foil — T, (see Fig. 8.

IV. CONCLUSIONS

In this work we have presented an extension of the HRT
approach 2] to inhomogeneous systems and we applied the
formalism to the wetting transition in the three-dimensional
(3D) Ising model in planar geometry. The approach pre-
sented here is, to our knowledge, the firstroscopictheory
able to describe capillary wave fluctuations at the level of the

FIG. 7. The double-logarithm plot of thgs isotherm for3  renormalization group approach. Its use is not restricted to
=v/ky,T=0.72 andu/v=0.95 in the asymptotic region. The line is the study of wetting but more generally to the study of fluc-
IN(xs) ==IN( = peo) +IN A, with A=0.62. tuations effects in nonhomogeneous systems. Differently

) ) _ ] from the standard bulk HRT, we introduce a cylindrical cut-
the following analysis. In the asymptotic region, close to theygf tg take into account the anisotropic spectrum of the fluc-
coexistence curve, {ix) displays a linear behavior. We fit tyations in such a reduced symmetry. We obtain a hierarchy
our data with a linear relation: () =aIn(u-puc)+b and  of evolution equations for the bulk properties which repro-
we obtaina=-1.040+0.001. This value is compatible with a duces the known RG approach close to the bulk critical point
logarithmic divergence of the adsorption; i.e., the inclusiontogether with an additional hierarchy of differential equa-
of fluctuations does not modify divergence of the adsorptiontions for the surface free energy and the interfacial correla-
so, as predicted by RG approach, the critical exponent fofions. This further hierarchy generally depends on bulk cor-
complete wetting remain mean-field-like even when we in-relation functions. In order to close the hierarchy at the
troduce the fluctuations. The main effect of fluctuations injowest level—i.e., keeping only the free energy
the asymptotic region is rather a renormalization of the amequations_we ana|yzed a simp|e Ornstein-Zernike ansatz
plitude A; see Fig. 5. To estimate the value of the amplitudefor both the bulk and interfacial correlations. Within this ap-
we fit the HRT, results with Ifxg)=In(A/Ap)=~In(u—-uc)  proximation, the resulting bulk critical exponents turn out to
+In A; see Fig. 7. We obtaiA=0.62 which is larger than the be exact to first order i@=4-d and the surface free energy
lattice mean-field resuléa=0.45. In Fig. 8 we plot the sur- equation is equivalent to the known functional RG approach
face susceptibility for two different temperatures. The fluc-applied to the effective capillary-wave Hamiltonig8-10.
tuations introduce a weak dependence of the critical ampliTo study the effects of fluctuations also in the nonasymptotic
tude on the temperature, which is absent in the mean-fielgegion we investigated by the HRT approach the complete
results. wetting transition in a lattice gas model with nearest-

Using Eq.(39) and our numerical result fok, we obtain  neighbor interactionsi.e., for the Ising modgl In order to
wprr=0.6 which is smaller than the RG estimation for the simplify the analysis we introduced a further decoupling ap-
Ising modelw=0.8 [12] and larger than the value=0.3  proximation which disregards the effects of bulk fluctuations
obtained from simulation results on critical exponents foron surface quantities. The numerical results show an inter-
critical wetting[16]. However, our numerical estimate is ob- esting renormalization of the critical adsorption amplitude
tained at higher temperaturg&=0.92T... The deficiencies of which can be related to a renormalization of the wetting pa-
the mean-field approximation prevents us from studying aameter. The HRT value of the wetting parametewis 0.6
wide range of temperatures and so it is also difficult to ex-which is smaller the the field-theoretical estimate for this
model[12] but it is greater than simulation results for critical
exponents of the critical wetting transitigh6] at lower tem-
perature. This can probably related to the increase of wetting
parameter forT—T.. Notwithstanding the crudeness of
some approximation we introduced, the results for critical
and noncritical quantities compare quite favorably with
available simulation data. Clearly there is room for improve-
ment within the class of OZ closures of the HRT hierarchy.
In particular it would be interesting to allow for a renormal-
ization of the transverse correlation lengthwhich we kept
constant. The extension of this approach to different systems,
32 s 28 (}'l_u 26 T2a 22 like off-lattice fluids or the Ising model in parallel-plate ge-

o e ometry, looks also promising.

FIG. 8. The double-logarithm plot of thgg isotherm for 8

=v/kyT=0.70 andﬂ=9.74; u/v=Q.95. We see that the effects of ACKNOWLEDGMENT
temperature on the critical amplitude are small. The lines are only a
guide to the eye. We thank R. Evans for helpful suggestions.
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APPENDIX A 77 52
. . . : . |ff dge T ¢ *codq).
Consider a lattice system with nearest-neighbor interac- o
tion
Now we introduce the shorthand notatif pp(1-p,) and
_ Jv,i,j, nearest-neighbors site, bo=-B0®. The surface susceptibility of tH@-system is eas-
Y otherwise. : ily expressed in terms dffy:
The Fourier transform of the dimensionless interparticle po- b _ﬁ2(92(_ Bag) -2 a B
tential is QTP w2 7 g X
#(q, k) = A y»(x) + cogq)], while the parametekg is given by Eq.(49). The evolution

equation(43) is written in quasilinear form by introducing

wherew=-y >0 and the new variable o defined by

d

Y= 3 cosk). vo=IN[1+P(Q)],
=t where
The Brillouin zone is defined by m<k;<m and we P(Q) = F(Q)a(Q)

choose the cylindrical of the forrij2,29

by — p) 2 apa(Q)
R {¢<K,q), vk =Q, e

"~ bo(ao- a(Q) + 1, Fa(Q)

01 ’}/2(K) > Q!
. . . bofir(Q)
with Q e [-1,1]. The evolution equation for the surface ten- =— o
sion of the lattice gas in three dimensions then becomes bom(Q) + f8°a(Q)
oA=po%) _1 and

=>D,(Q)In[1+F , Al B ~

9Q 2 2Q)In[ (Qa(Q)] (A1) vo= fa(Q) + QZ(Q)U(}

wherea(Q) is the value ofe®(«) evaluated aty,(k)=Q and  where @(Q)=a?(Q)(p,~-p,) 2. By differentiating twice the

D,(Q) is the two-dimensional density of states: evolution equatiorn(43) with respect to the chemical poten-
P2 5 tial and substituting the definition af, we get

K —
Dy(Q) = | ——5d8Q- = —K(H1-Q?), "
Q)= | o=t = (TGP P o7,
whereK(x) is complete elliptic integral of the first kind. Q2 I

Invertingu:v(bg) we find
APPENDIX B . paQe - 1]
Q - o~ _ ~ _ _ ~ o~ .
In this appendix we provide some detail on the algebraic o~ a(QI[e - 1] - fiaga(Q)

manipulations on Eq(43) necessary for implementing an pifferentiating this relation with respect @ we obtain
efficient numerical algorithm. As a first step we give the

explicit form for the effective surface potential obtained by % __ 0 B a(Q)ee-1]

substituting the parametrization discussed in the text for the Q0 0O\[a-a eo—11-f o

function g9(z), Eq. (14), into the definition ofa®(k), Eq. a0~ a(QIL .] r@(Q)

(42). By use of the mean-field density profild5), g<(2) is _ BHEa(Q)%aguof’Q - B aagle'e - 1)2

just a Gaussian function anef(«) is independent ofq: - (m(q)[e’e— 1] - f,r}2 , (B2

wherevg=dvg/ dQ andv”=d%vq/ du?. We now introduce the
notation

r(Q) = aQ)
2
:(’3> [(d-1)22Q+14l,(d-1)(1+Q) +12],

m

_ 2 (m
aQ(K) ~ Mf dqe_ngzllz(f)(/(,q)
2w —

— 2 7T
_ (sz_Pl)J dqe 228w (d - 1) y(x) + codq)]
w -1

_ Bupy = py (A= D) +1] -
a
where Q) =T~ Q) = 2(d-11,1-0),
l,= f dqe—qzs‘i/{ which give'r:?&o'& andm=-a. By solving the algebraic Eq.
-7 (B2) for vg we obtain
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L@ D,(Qe "
°7134Q) 2B°17a*(Q)ao
x{m(Q)[e’e - 1] - f,r}%vp, (B3)

which is the evolution equation far,. Finally, by a further
change of variable, we introdueg, by

fa(Q) + AQ)?up = In[1 + F(Q)a(Q)]. (B4)

Switching from the chemical potential to the fugacity
=eflrred we express the derivatives of, in terms ofug:

[e’e—1]%evQ +

bo=f,a+ 2daug + @i,

"o, ~2
vQ af] +a uQ

—~ a2 &Z_f} =2 2[ Mo azﬂ}
_aﬁ[zaz”z&zz “F| 2 z+220722

Substituting these expressions into the evolution equation for

PHYSICAL REVIEW E70, 051611(2004

vo, EQ.(B3), we obtain the quasilinear equation satisfied by
Ug:
2

a
2=+, +M—

o — (B5)

with

1| @ e e
leﬁ[ﬁ(eﬂ?_ 1)% Q—fra—2aauQ], (B6)

D,(Q)e”
2B2~4(Q)f2~

ot , o ~22%)
(aﬂ{ 9z Zzazz}ﬂlﬂzaz - (B7)

_ D,(Q)e R
2B%32(Q) 2

{mQlee-1]-fr}?

)=

{mQIlere-1]-fr}?p?2. (BY)
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