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We study how the formalism of the hierarchical reference theory(HRT) can be extended to inhomogeneous
systems. HRT is a liquid-state theory which implements the basic ideas of the Wilson momentum-shell renor-
malization group(RG) to microscopic Hamiltonians. In the case of homogeneous systems, HRT provides
accurate results even in the critical region, where it reproduces scaling and nonclassical critical exponents. We
applied the HRT to study wetting critical phenomena in a planar geometry. Our formalism avoids the explicit
definition of effective surface Hamiltonians but leads, close to the wetting transition, to the same renormaliza-
tion group equation already studied by RG techiques. However, HRT also provides information on the non-
universal quantities because it does not require any preliminary coarse graining procedure. A simple approxi-
mation to the infinite HRT set of equations is discussed. The HRT evolution equation for the surface free
energy is numerically integrated in a semi-infinite three-dimensional Ising model and the complete wetting
phase transition is analyzed. A renormalization of the adsorption critical amplitude and of the wetting param-
eter is observed. Our results are compared to available Monte Carlo simulations.
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I. INTRODUCTION

Effective interfacial Hamiltonians are widely used to de-
scribe the large-scale fluctuations that occur near surface
critical phenomena such as wetting[1]. Of course these mod-
els are not truly microscopic but are usually considered valid
for length scales larger than some appropriate cutoff. The
prevailing belief is that interfacial models may be derived
from more microscopic approaches if the bulk degrees of
freedom are integrated out. Needless to say, this is an ex-
tremely difficult task and interfacial models still retain a
partly phenomenological status. Therefore it is interesting to
develop a genuine microscopic approach to study interfacial
behaviors. Effective Hamiltonians are used to describe the
critical behavior also in homogeneous systems because they
allow a direct implementation of renormalization group(RG)
ideas. For such bulk systems, the hierarchical reference
theory (HRT) [2,3] provides a systematic way to derive an
effective Hamiltonian from a given microscopic model[4].
This theory, which implements the basic ideas of the Wilson
momentum-space renormalization group for microscopic
Hamiltonians, allows us to derive an exact hierarchy of dif-
ferential equations describing the evolution of the free en-
ergy and of then-point correlation functions of the system
when fluctuations on larger and larger length scales are in-
cluded. This hierarchy of differential equations can be
closed, for example, by imposing an approximation for the
pair correlation function, usually of Ornstein-Zernike(OZ)
form. Already at this level of approximation, the HRT shows
genuine nonclassical critical behavior.

The extension of the HRT formalism to inhomogeneous
systems would enable us to study the interfacial phase tran-
sition starting from the microscopic model, without the ex-
plicit introduction of effective interfacial Hamiltonians.
Given two homogeneous phasesa and b, in contact with a
third passive phase(a wall), we study the particular case of
complete wetting in planar geometry[1]—i.e., the phase
transition which corresponds to the growth of an infinitely
thick liquid layer close to the wall when bulk phase coexist-
ence is approached at fixed temperature. The standard fluc-
tuation theory of the wetting transition, beyond the mean-
field approximation, is described by using the capillary-wave
(CW) effective Hamiltonian ind dimensions[5,6]:

HCW=E dd−1xFS

2
f¹ lsxdg2 + W„lsxd…G , s1d

where lsxd is a collective coordinate which represents the
distance of thea-b interface from the wall,Wsld is the ef-
fective interface potential which describes the effective inter-
action between the wall and thea-b interface, andS is the
stiffness coefficient of the interface. For isotropic modelsS
can be identified with the surface tension, but it may also
depend on the curvature of the interface. The form of effec-
tive interfacial potentialWsld depends on the range of the
microscopic interaction. In the case of short-range potentials,
for large l it is parametrized as[5,6,8–11]

Wsld . − A exps− ml/jd + B exps− nl/jd, s2d

wherem, n are two dimensionless constants withn.m. The
parameterj can be identified with the bulk correlation
length. It is important to note that the use of such an effective
surface Hamiltonian can be justified only when bulk fluctua-*Electronic address: orlandi@pv.infn.it
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tions are small—i.e., far from the bulk critical point[7]. In
three dimensions, renormalization group studies of the
Hamiltonian(1) [8,10] predict that the wetting critical behav-
ior is nonuniversal depending on the value of the wetting
parameter:

v =
kBT

4pSjb
2 , s3d

wherejb is the true bulk correlation length which governs
the exponential decay of correlations in real space[12,13].
At the critical wetting transition(i.e., wetting at coexistence)
the critical exponents depend on this parameter[8] while at
complete wetting(i.e., wetting approaching coexistence) the
critical exponents are predicted to remain mean-field-like but
critical amplitudes arev dependent. For example, the inter-
face heightl grows as

l

jb
, S1 +

v

2
DlnsDmd, s4d

whereDm=m−m0 is the deviation of the chemical potential
from the value at coexistence. The mean-field approximation
to an effectivef4 Hamiltonian provides a valuevmf=0 via
Eq. (4).

The three-dimensional semi-infinite Ising model is one of
the simplest microscopic models which may be simulated to
test the RG predictions. The value of the wetting parameter
v is a function of the temperature and has been theoretically
estimated [12,14]: v,0.8 for Tc.Tù0.6Tc. Extensive
Monte Carlo[15] simulation studies appear to be consistent
with v,0.3 at Tsim.0.663Tc [16], a much smaller value
than the predicted one. One possible solution of this discrep-
ancy between the simulations and RG results is the inad-
equacy of the CW Hamiltonian and the introduction of more
general effective interfacial Hamiltonians[17–20].

The HRT, suitably generalized to deal with inhomoge-
neous systems, can be used to study the effects of thermal
fluctuations beyond the mean-field behavior without refer-
ence to the CW approach and so without introducingv as an
external parameter. We first obtain the HRT surface evolution
equation for the Ising model which is then numerically
solved in the case of complete wetting in three dimensions.
The divergence of the adsorptionG is studied when coexist-
ence is approached and the critical amplitude is evaluated
and compared to simulations. This work is organized as fol-
lows: in Sec. II we extend the HRT approach to the case of
inhomogeneous systems with planar geometry. We derive the
evolution equation for the bulk and surface free energy. We
also show that in the asymptotic region the HRT equations
reduce to the known RG approach. In Sec. III we study com-
plete wetting for a lattice gas model with nearest-neighbor
interactions(which is equivalent to the Ising model). We
investigate how fluctuations modify the mean-field picture
by integrating the HRT surface equation. In Sec. IV we
briefly summarize the most relevant results and compare
them to the avaliable simulation data.

II. HRT FOR INHOMOGENEOUS SYSTEMS

A. Evolution equations

The starting point in the derivation of HRT equations is
the separation of the interatomic potentialvsrd into two
parts:

vsr d = vRsr d + wsr d, s5d

where vRsr d is the short-range repulsive part ofvsr d. The
thermodynamic and structural properties of the system with
interaction vRsr d, the “reference system,” are considered
known, at least numerically. It is also assumed that there is
no phase transition in the reference system. Insteadwsr d is a
(mostly) attractive term, which triggers the liquid-vapor
phase transition. Using this separation and performing a Leg-
endre transformation on the grand partition function, a for-
mal diagrammatic expansion for the Helmholtz free energy
can be written to all orders in perturbation theory[3]. We
implement the basic ideas of Wilson’s RG approach[21]
within such a formal perturbative expansion to study how the
bulk and surface thermodynamic quantities evolve due to the
inclusion of fluctuations. This can be done by introducing a
sequence of intermediate potentials characterized by an in-
frared cutoff in Fourier space, depending on a parameterQ.
In the HRT for(off-lattice) bulk systems this cutoff is spheri-
cal in Fourier space, thereby respecting the isotropy of the
interaction. Here we want to consider the case of inhomoge-
neous systems in the presence of a planar wall, where only
cylindrical symmetry survives in wave vector space. More-
over, in wetting phenomena the correlation length parallel to
the surface,ji, and the correlation length perpendicular to the
surface,j', are related by[1,10]

j' ,Hflnsjidg1/2, d = 3,

ji
s3−dd/2, d , 3.

J s6d

This relationship suggests that the fluctuations perpendicular
to the wall diverge much more slowly than the fluctuations
parallel to the wall. Therefore it is natural to define a sharp
cylindrical cutoff [22] which prevents long-wavelength CW
critical fluctuations. Within the HRT approach, this is imple-
mented by defining the sequence of intermediate potentials:

wQsk,qd = Hwsk,qd, k ù Q,

0, k , Q,
J s7d

wherek is the component of the wave vector parallel to the
surface andq is the component normal to the wall. The sys-
tem characterized by the potentialvQsr d=vRsr d+wQsr d will
be named theQ system. ForQ→`, vQ reduces tovR while
for Q→0 the full interaction is recovered. Therefore it is
natural to look for evolution equations governing the change
in the physical properties of theQ system as the cutoff is
varied. In order to derive such evolution equations, we con-
sider the structure of the perturbative series which defines the
free energy of the model. In the perturbative diagrammatic
expansion of the free energy of theQ systemAQ, every loop
contains one or moref=−bwQ bonds[2]. Therefore, due to
the vanishing ofwQsk ,qd for k,Q, AQ is defined by the
same perturbative expansion as the full free energy of the
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model,A, where each(longitudinal) momentum integration
is limited by an inferred cutoffQ. The correspondence be-
tween a cutoff in the potential and a cutoff in fluctuations
(i.e., in the momentum integrations) is valid with the single
exception of the first, mean-field, diagram of the perturbation
series which does not contain any loop. This contribution is
in fact discontinuous inQ because it contains just thek=0
Fourier component of the attractive potential(7) which is
zero for everyQÞ0 and finite forQ=0. However, we can
introduce a modified free energyAQ which is continuous in
Q and is simply related toAQ:

− bAQ = − bAQ −
1

2
ffsr = 0d − fQsr = 0dg E ddrrsr d

+
1

2
E ddr 1d

dr 2ffsr 1,r 2d − fQsr 1,r 2dgrsr 1drsr 2d.

s8d

Analogously, we can introduce the direct correlation func-
tions Cn

Q for eachQ system by functional derivation of the
free energyAQ with respect to the local densityrsr d. These
correlation functions are continuous inQ for nù3 because
there are no zero-loop contributions in the corresponding
perturbative expansion, but the two-point direct correlation
function is discontinuous atk=Q. So we introduce a modi-
fied function which is continuous, being the second func-
tional derivative ofAQ with respect to the density:

C2
Qsq,kd = C2

Qsq,kd + ffsq,kd − fQsq,kdg. s9d

It is apparent from the definitions(8) and(9) thatAQ andC2
Q

coincide with the free energy and direct correlation function
of the fully interacting system, respectively, whenQ→0. On
the other hand, in the limitQ→` these modified quantities
reproduce the mean-field approximation for the free energy
and the direct correlation function, contrary toAQ and C2

Q,
which reduce to the reference system quantities. This sug-
gests that the HRT procedure does indeed describe the
growth of fluctuations on top of the mean-field approxima-
tion, as in the RG approach.

The simple relationship between the cutoff-dependent
modified quantities(AQ andC2

Q) and theQ-system properties
(AQ andC2

Q) allows us to derive the evolution equations de-
scribing howAQ andCn

Q change whenQ is decreased from
infinity to zero—i.e., when fluctuations on larger and larger
length scales are included. The perturbative expansion of the
free energy can be specialized to the case where the refer-
ence system is theQ system and the perturbation potential is

dvQsq,kd = vQ−dQsq,kd − vQsq,kd

= Hvsq,kd, Q − dQ , k , Q,

0, elsewhere,
J s10d

wheredQ.0 is an infinitesimal shift in the cutoff. By sum-
ming all terms linear indQ in the diagrammatic expansion of
the free energy and taking the limitdQ→0 one obtains the
evolution equation for the free energy. Until now we have
formally considered the total free energy, but for an inhomo-
geneous system it is useful to separate the bulk quantities,

which refer to the homogeneous system without an external
potential, from the surface terms due to the presence of the
wall:

AQ = Ab
Q + DAQ,

rsr d = rb + Drsr d,

F2
Qsr 1,r 2d = F2b

Q sz1 − z2,us1 − s2ud + DF2
Qsr 1,r 2d,

where the two-point correlation functionF2
Qsr 1,r 2d is the

functional inverse of −C2
Qsr 1,r 2d—i.e.,

E dr dF2
Qsr 2,r 3dC2

Qsr 3,r 2d = − dsr 1 − r 2d. s11d

This differs from the known Ornstein-Zernike equation for
inhomogeneous fluids because of the inclusion of the ideal
gas terms. Note that, due to the cylindrical cutoff,F2b

Q has
lost the full rotational symmetry of the physical system for
every QP s0,`d. The separation in bulk and surface terms
may be inserted in the diagrammatic expansion of the total
Helmholtz free energy. We begin with the derivation of the
evolution equation for the bulk contribution to the free en-
ergy. Only the one-loop diagrams containing “bulk”F2b

Q

bonds alone in the diagrammatic expansion contribute to the
leading order indQ. The sum of these term can be carried
out in closed form[2] and reproduces the known random
phase formal expression

bAb
Q − bAb

Q−dQ = −
V

2
E dq

2p
E

sQ,Q−dQd

dd−1k

s2pdd−1

3lnf1 − fsq,kdF2b
Q sq,kdg. s12d

This equation is not yet suitable for taking thedQ→0 limit
because it contains the discontinuous functionF2b

Q sq,kd
=−1/C2b

Q sq,kd. ExpressingF2b
Q in terms of the continuous

function F2b
Q sq,kd=−1/C2b

Q sq,kd via Eqs. (9) and (11) we
obtain

]

]Q
SbAb

Q

V
D =

1

2
Kd−1Q

d−2E dq

2p
lnf1 +F2b

Q sq,Qdfsq,Qdg,

s13d

whereKd−1 is a geometric factor defined by

E dd−1k

s2pdd−1dd−1sk − Qd = Kd−1Q
d−2.

The initial condition must be imposed atQ=` and coincides
with the mean-field approximation for the Helmholtz free
energy of the fully interacting system. Unfortunately, Eq.
(13) is not written in closed form because the evolution of
the free energy depends on knowledge of the two-particle
correlation functionF2b

Q sq,Qd at a generic value of the cutoff
Q. However, we can study how the two-particle functionF2b

Q

itself (or equivalentlyC2b
Q ) is modified owing to the inclusion

of fluctuations by performing the same analysis leading to
Eq. (13). In this way we obtain an evolution equation for the
pair correlation function, but this equation contains the three-
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particle and four-particle correlation functions. The proce-
dure may be iterated to higher orders, thereby obtaining an
infinite hierarchy of coupled differential equations. This hi-
erarchy may be truncated at the level of the first equation by
introducing a suitable ansatz for the two-particle correlation
function and using the compressibility sum rule[23] which
relates the second density derivative of the free energy to the
zero-wave-vector limit of the pair correlation function

C2b
Q sk = 0d =

]2s− bAb
Q/Vd

]rb
2 . s14d

Note that this equation is exact for eachQ; system, it pro-
vides an extremely useful link between thermodynamics and
the long-wavelength limit of correlation functions but it is
not sufficient to close the hierarchy because it does not give
information about the momentum dependence ofF2b

Q sq,kd.
In the derivation of the bulk evolution equation, transla-

tional invariance allowed us to perform an analytical resum-
mation of the one-loop diagrams leading to Eq.(13) without
specifying the form ofF2b

Q . Instead, in order to express in
closed form the sum of the required diagrams in the expan-
sion of the surface free energies, we need to specialize to a
particular form of the inhomogeneous two-point correlation
functionDF2

Qsr 1,r 2d. Therefore, it is important to understand
what type of fluctuations are described byDF2

Qsr 1,r 2d. Let us
consider the case of a wetting transition between two bulk
phasesb and a in contact with a wall. At a temperature
larger than the wetting temperature and slightly off coexist-
ence, the system will consist of a slab of the wetting phase,
with densityrb, an interfacial region, and the bulkra phase.
If F2b

a , which is the bulk correlation function of thea phase,
is not equal toF2b

b , then DF2
Qsr 1,r 2d, which is defined as

F2sr 1,r 2d−F2bsr 1−r 2d, describes not only the correlations in
the interfacial region, but also in the slab. In this case it is
difficult to find a suitable ansatz for the form ofDF2

Q. How-
ever, in systems where the bulk correlation functions are the
same for the two phases the problem simplifies andDF2

Q just
describes the interfacial region. This is precisely the case of
the lattice gas model with nearest-neighbor interaction(i.e.,
of the Ising model) due to the symmetryrb=1−ra. If the
inhomogeneous part of the two-point correlation function de-
scribes only the interfacial region, we can parametrizeDF2

Q

according to the standard factorized form[24]

DF2
Qsq1,q2,kd = gQsq1dgQsq2dFs

Qskd, s15d

wheregQszd, the Fourier transform ofgQsqd, is usually iden-
tified as the first spatial derivative of the density profile and
we have taken the wall perpendicular to thez axis. Using this
parametrization it is possible to perform the summation of
the one-loop diagrams which allows us to obtain the evolu-
tion equation for the surface free energy:

]

]Q
SbDAQ

S
D =

Kd−1

2
Qd−2 lnf1 + Fs

QsQdaQsQdg, s16d

whereaQ is

aQskd =E dq

2p
gQsqd

fsk,qd
1 + fsk,qdF2b

Q sk,qd
gQs− qd. s17d

Note that the evolution of the surface free energy is coupled
to the bulk evolution through theaQ coefficient.

In the general case ofF2b
a ÞF2b

b the derivation of the evo-
lution equation is more involved: By introducing further sim-
plifying assumptions in the spirit of the local density ap-
proximation, it is still possible to obtain a decoupled
evolution equation identical to Eq.(16) with a slightly dif-
ferent coefficientaQ [25]

aLDA
Q skd =E dq

2p
gQsqdfsk,qdgQs− qd. s18d

Equation(16) has been obtained by starting from an expan-
sion of the free energy at constant density profile: everyQ
system has the samersr d. It means that the external potential
which stabilizes the density profile changes withQ. In the
case of wetting or drying this procedure is clearly artificial:
we would rather want to study how the density profile is
modified by the inclusion of fluctuations atfixed external
potential. In order to allow the change inrsr d when fluctua-
tions are included, it is convenient to perform a Legendre
transform of the total free energyAQ. In this way, it is pos-
sible to obtain the evolution equations at fixed fugacity—i.e.,
by keeping fixed the quantity

gszd = bfm − Uszdg,

whereUszd is the microscopic interaction between the wall
and molecules of the fluid. We first define the(modified)
grand free energy by

− bvQ = − bAQ +E d3rrQszdgszd. s19d

Here gszd is fixed to the physical value, while the density
profile changes with the cut off wave vectorQ. The
Q-dependent density profile is related tovQ by

rQszd = −
dbvQ

dgszd
. s20d

As usual, forQ→` vQ reduces to the mean-field grand free
energy andrQszd approaches the density profile in the mean-
field approximation. From the properties of the Legendre
transform we obtain

S ]bvQ

]Q
D

g

= S ]bAQ

]Q
D

r

. s21d

As a consequence, the evolution equation for the grand free
energy formally coincides with that of the Helmholtz free
energy and the surface tensionsQ=DvQ/S obeys the evolu-
tion equation

]sbsQd
]Q

=
1

2
Kd−1Q

d−2 lnf1 + Fs
QsQdaQsQdg. s22d

Note that nowaQ is given again by Eq.(17) in terms of
gQsqd andFs

Qskd. Analogously to the bulk case, also surface
quantities obey a hierarchy of coupled differential equations
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which can be closed at the free energy level(22) by a suit-
able ansatz forFs

Qskd andgQszd. Two surface sum rules will
provide the link between the free energy and the correlation
functions[1]:

−
]sQ

]m
= GQ =E dzfrQszd − rb

Qg =E dzDrQszd, s23d

−
]2sQ

]m2 =E dz1dz2DF2
Qsz1,z2,k = 0d = bFs

Qs0dUE dzgQszdU2

.

s24d

Equation(24) can be identified as a “surface compressibil-
ity” sum rule while Eq.(23) constrains the form of the den-
sity profile. It is interesting to note that these two sum rules
are sufficient to obtain a quite good description of the wet-
ting phase transition[24].

B. Asymptotic equations

1. Bulk equation

In this section we show how the HRT evolution equations
describe the asymptotic regime near phase transitions. The
standard bulk HRT with spherical cutoff in the asymptotic
critical region is known to give the same evolution equation
obtained by the momentum-space RG approach[2,3]. Here
we show that the introduction of a cylindrical cutoff does not
modify this property of the bulk HRT equation.

In the thermodynamic states close to the bulk critical
point, Eq. (13) can be simplified. This regime is character-
ized by the growth of long-range fluctuations—that is, by the
divergence ofF2b

Q sq=0,k=0d for Q→0—i.e., in the final
stages of the evolution. In order to study the critical region
we have to extract the singular contribution to the free en-
ergy from the evolution equation(13): Only a small neigh-
borhood of the integration domain, close toq=0 andQ,0,
contributes to the singularity. In this domain we can simplify
the argument of the logarithm due to the divergence of the
pair correlation function forq andk approaching zero:

]

]Q
SbAb

Q

V
D =

Kd−1

2
Qd−2E

−q0

q0 dq

2p
lnfF2b

Q sQ,qdg.

Hereq0 is an arbitrary ultraviolet cutoff which is introduced
to extract the singular contribution to the integral. Note that
this equation does not contain the interatomic potential ex-
plicitly and acquires a universal form independent of the
specific microscopic interaction. The next step is to choose a
form for the bulk pair correlation function. As usual, we
adopt an Ornstein-Zernike form for the direct correlation
function:

C2b
Q sk,qd = −

1

F2b
Q sk,qd

= − bsk2 + q2d +
]2

]r2S− bAb
Q

V
D ,

s25d

where we imposed the sum rule(14) and we assumed thatb
remains finite also at the critical point. This particular ansatz

for the pair correlation function implies that the critical ex-
ponenth is zero. We know that in three dimensionh is not
zero, but its value is small and it is zero to first order in the
e expansion[21] so that, in three dimensions, this is a good
approximation. Substituting this parametrization in the evo-
lution equation we obtain

]

]Q
S− bAb

Q

V
D =

Kd−1

2
Qd−1E

−q0/Q

+q0/Q du

2p

3lnFQ2bs1 + u2d −
]2

]r2S− bAb
Q

V
DG .

We can eliminate the explicit dependence on the cutoffQ in
the evolution equation by another change of variable:

t = − lnsQd,

z= srb − rbcdÎ b

Kd−1
efs2−dd/2gt,

Htszd = −
b

V
sAbc

Q − Ab
Qd

edt

Kd−1
,

where rbc and Abc are the density and free energy at the
critical point. Using these variables the asymptotic evolution
equation becomes

]Htszd
]t

= dHtszd +
2 − d

2
zHt8szd

+
1

2
E

−`

+` du

2p
lnFH9szd + u2 + 1

H9s0d + u2 + 1
G , s26d

whereH8szd andH9szd are the first and second derivatives of
H with respect toz and we setq0/Q→` in the Q→0 limit.
The integration can be easily performed and we obtain

]Htszd
]t

= dHtszd +
2 − d

2
zHt8szd +

1

2
fÎHt9szd + 1

− ÎHt9s0d + 1g. s27d

This equation can be analytically investigated ind=4−e di-
mensions. The fixed point and the relevant eigenvalues pro-
vide the critical exponents to first order ine: g=1+e /6, b
=1/2−e /6, andd=3+e, which coincide with the known ex-
act RG results[21]. As expected, to lowest order ine, the
choice of cutoff symmetry does not modify the universal
properties close to the bulk critical point within the HRT
approach.

2. Surface equation

The surface evolution equation we have obtained, Eq.
(16), depends on the form of the density profile through the
quantityaQskd, Eqs.(17) and (18), if gQszd is taken to rep-
resent the spatial derivative ofrQszd. Here and in the follow-
ing we assume that the shape ofrQszd is not affected by
fluctuations. Fluctuations are assumed to shift rigidly the
mean-field density profile by aQ-dependent amountlQ iden-
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tified as the distance of the interface from the wall:DrQszd
=Drfsz− lQd. This assumption can be related to the nonho-
mogeneity of the spectrum of fluctuations and is customary
in most studies of the wetting phenomena[8,10]. From Eq.
(6) we see that the fluctuations perpendicular to the
interface—i.e., the fluctuations which distort the form of the
profile—are only weakly divergent and as a first approxima-
tion we can neglect their effect. Note that this assumption is
not justified near the bulk critical point, where the interplay
between bulk and surface fluctuations does modify also the
form of the density profile. Our analysis is therefore valid
only away from the bulk critical point. The long-wavelength
behavior of the surface correlation functionFs

Qskd is mod-
eled by an Ornstein-Zernike form

Fs
Qskd = F− sDrd2S ]2bsQ

]sbmd2D−1

+ bsk
2G−1

, s28d

wherebs is a nonuniversal constant that tends to a finite limit
at the wetting transition and we have used the exact sum rule
(24):

]2s− bsQd
]sbmd2 = sDrd2Fs

Qsk = 0d, s29d

whereDr=edzgQszd=sra−rbd is the difference between the
bulk density of the two phases across the interface. Because
we assume to be away from bulk critical point, this quantity
is regular at wetting transition. The assumptions we made on
the density profile and on the surface correlation function are
similar to those underlying the usual RG group treatment of
the wetting transition[1,8–10]. Note that for wetting phe-
nomena the critical exponenth is known to be zero[1,5] but
the Ornstein-Zernike form for the surface correlation func-
tion is strictly accurate only in the interfacial region[18,19].

Away from the bulk critical point, the asymptotic form of
the evolution equation for the surface free energy then be-
comes

]s− bsQd
]Q

=
Kd−1

2
Qd−2 lnSF ]2s− bsQd

]sbmd2 G−1

+ bs8Q
2D ,

s30d

where bs8=bssDrd2 and we have disregarded nonsingular
terms. Notice that Eq.(30) does not depend on the specific
shape of the density profile. The asymptotic evolution equa-
tion (30) is in fact fully equivalent to the nonperturbative
“functional” RG approach[9,10]. To prove this remarkable
correspondence, we introduce the surface free energyaQsGd
by Legendre transform ofsQsmd:

aQsGd = sQsmQd + mQG. s31d

HereG is the adsorption(23) and thenmQ is such that

mQ =
]aQsGd

]G
. s32d

The asymptotic evolution equation ofaQsGd follows
straightforwardly from the evolution equation ofsQ, Eq.
(30), and from the properties of the Legendre transform

]s− baQd
]Q

=
Kd−1

2
Qd−2 lnS−

]2s− baQd
]G2 + bsQ

2D . s33d

By means of the change of variables,

t = − lnsQd,

l = GS bs8

Kd−1
D1/2

efsd−3d/2gt,

Vtsld =
besd−1dt

Kd−1
aQ,

we obtain the known RG equation[5,8–10]

dVtsld
dt

= sd − 1dVtsld +
1

2
s3 − dd

]Vtsld
]l

+
1

2
lnF ]2Vtsld

]l2
+ 1G ,

s34d

where Vtsld is the effective interfacial potential in the RG
approach. From this formal equivalence, we can identify the
renormalized effective interactionVtsld as the surface Helm-
holtz free energyaQ and the height of the interfacel as a
measure of the absorptionG. The initial (i.e., bare) form of
Vtsld is then given by the value ofaQsGd at a suitable match-
ing cutoff Q=Q0!1. The appropriate value should include
the effects of short-wavelength fluctuations(i.e., of fluctua-
tions at Q.Q0) but a rough estimate is obtained starting
from the mean-field free energy. It is possible to show that,
in the sharp-kink approximation[1] for the density profile of
a continuous system, the initial form of ourVtsld is given by
Eq. (2)—i.e., the same used in the effective capillary-wave
Hamiltonian.

III. LATTICE GAS COMPLETE WETTING

A. Mean field

In this section we consider the wetting transition in a
semi-infinite lattice gas model with nearest-neighbor interac-
tion in contact with an unstructured wall. The interaction
between the wall and lattice gas is described by an external
potential ui, where the subscripti ù1 labels layers of the
lattice gas: we consider a planar geometry with an external
potential translationally uniform in directions parallel to the
wall. It is convenient to introduce an interlayer interactions
vi j which collects all inter-atomic nearest-neighbor interac-
tions of the particles belonging to theith and j th layers,
which are assumed to be nearest neighbors. Note that there is
also a contributionvii which describes the interaction of par-
ticles within the same layer. We shall discuss in the following
only the particular model for which the external potential
acts only on the first layer and is attractive:

ui = udi,1

and
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vi j = 5 v, i, j nearest-neighbors layers,

4v, i = j ,

0, otherwise,
6

with u,v,0. In the mean-field approximation, the free en-
ergy Amf of the system reads

− bAmf

S
= −

bAR

S
+

1

2o
i,j

rir jfi j , s35d

whereri is the density of thei layer,fi j =−bvi j , andS is the
area of the layers. The reference system is a hard-core lattice
gas:

− bAR

S
= − o

i

fs1 − ridlns1 − rid + ri lnsridg. s36d

It is well known that in the mean-field approximation the
bulk critical temperature iskBTc/ uvu=3/2. For T,Tc there
are two stable phasesa andb, which coexist form0=−3uvu.
This value of the chemical potential at coexistence is not
modified by fluctuations due to the particle-hole symmetry of
the model, which also leads to a relationship between the
bulk densities of the two coexisting phases:ra=1−rb. The
mean-field density profile is related to the external potential
by thermodynamics:

gi = −
]

]ri
SbAmf

S
D = lnF ri

1 − ri
G − o

j

r jfi j , s37d

wheregi =bsm−uid. This is a nonlinear equation for the den-
sity profile which can be conveniently written as

ri =
exi

1 + exi
, s38d

where

xi = gi + o
j

r jf ji .

On general grounds, for nearest-neighbor interactions
there are two possible scenarios depending on the value of
u/v [26], named the strong substrate regimesu/v.1d and
the intermediate substrate regimes1/2,u/v,1d. There is
also another regime for 0,u/v,1/2, the weak substrate
regime, but its properties follow from those of the interme-
diate regime due to the symmetry of the Ising model: they
describe the same phenomena of the intermediate regime but
on “the other side” of the coexistence line[26]; i.e., in one
case the bulk density isra in the other case isrb. In Figs. 1
and 2 we sketch the phase diagrams in the strong and inter-
mediate regimes, respectively. Foru/v.1 an infinite se-
quence of transitions occurs, corresponding to condensation
of successive monolayers. The critical temperatures of these
layer transitions approach, for high-oder multilayers, a well-
defined temperatureTR, the roughening temperature. At a
temperature belowTR isotherms for the adsorptionG show
an infinite sequence of sharp steps asm→m0. BetweenTR
andTc the steps are rounded butG still diverges, approaching
coexistence. Instead foru/v,1 the layer transitions no
longer extend to theT=0 axis but now meet the coexistence

axis below a characteristic wetting temperatureTW. Notice
that the phase diagrams of the intermediate and strong sub-
strate regimes are similar forT.TW.

Mean-field theory fails to describe the roughening transi-
tion and it incorrectly predictsTR=Tc [27]. Therefore, at the
mean-field level there is no smooth wetting transition but
only a sequence of layer transitions; nevertheless, it is inter-
esting to note that in the intermediate regime for high tem-
peratures the behavior ofGsmd at fixed T is very similar to
that of a smooth wetting transition. We numerical solve the
nonlinear mean-field density profile equation(38), with stan-

FIG. 1. Typical surface phase diagram with representative gas-
phase adsorption isotherms for strong substrate regime
su/v.1d. Herem is in unitsv andG is in units of lattice spacing.

FIG. 2. Typical surface phase diagram with representative gas-
phase adsorption isotherms for intermediate substrate regime
1/2,u/v,1. Herem is in units v and G is in units of lattice
spacing.
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dard technique[28], in the intermediate regimeu/v=0.95 at
different temperatures and we calculate the adsorption

G = o
i

sri − rbd,

whererb is the bulk density obtained by

bm = lnF rb

1 − rb
G − 6rbf.

At low temperature, as previously discussed, we see a se-
quence of layer transitions while at high temperature the
layer transitions are still present but are shifted very near the
coexistence line. As a consequence, theGsmd isotherm,
shown in Fig. 3, is smooth and looks very similar to what is
expected in the wetting regime: The divergence close to the
coexistence line is well represented byGsmd.A lnsm−mcod
as in wetting. A fit of the data points gives a valueA.0.45
in a wide range of temperatures(see Fig. 4).

If we suppose that the capillary-wave effective Hamil-
tonian describes the critical behavior of wetting phenomena,
we can use our data on the critical amplitudeA to estimate
the wetting parameterv:

S1 +
v

2
D =

A

Drjb
, s39d

whereDr is the difference between the bulk density of the
two phases across the interface and we usel .GsDrd−1. Near
coexistenceDr=1−2rb due to the particle-hole symmetry of
the system. Thetrue correlation lengthjb [13] can be ob-
tained from the Ornstein-Zernike form of the bulk correla-
tion we have adopted in this investigation:

coshsjb
−1d = 1 +

1

2
sjb

*d−2, s40d

sjb
*d2 =

rbs1 − rbdb
1 − 6brbs1 − rbd

, s41d

where jb
* is the second-moment correlation length, analyti-

cally obtained by expanding to the second order the Fourier
transform of the direct correlation function. By substituting
into Eq. (39) our numerical result for the critical amplitude
A, we obtainvmf.0 as expected in the mean-field approxi-
mation.

We can also evaluate the mean-field surface susceptibility
xs defined as

xs =
]G

]m
= o

i
S ]ri

]m
−

]rb

]m
D .

To obtainxs in the mean field, we differentiate the density
profile equation(37) with respect to the chemical potential:

b =
]ri/]m

ris1 − rid
− 4b

]ri

]m
− b

]ri+1

]m
− b

]ri−1

]m
.

This is a tridiagonal set of linear equations in]ri /]m that can
be numerically solved. This route gives more accurate results
than the direct numerical differentiation of the adsorption.
Close to coexistence, the surface susceptibility diverges as
xs.A/Dm.

B. HRT surface equation

After having discussed the mean-field approximation,
which defines the initial condition of the HRT equation, we
are ready to tackle the numerical solution of the HRT surface
equation. In this first application of the HRT approach to
inhomogeneous systems we are mainly interested in surface
fluctuations in a temperature range not too close to the bulk
critical point. In such a regime, the dependence of the surface
evolution equation(22) on bulk quantities via the definition
(17) can be neglected. Therefore, as first step, we have cho-
sen to adopt a local density approximation foraQskd, Eq.
(18):

aQskd =E dq

2p
ugQsqdu2fsq,kd. s42d

In Appendix A we show how the evolution equation for the
surface tension, Eq.(16), constructed for a continuum sys-
tem, must be modified to be applied to a lattice system
[2,29]. The evolution equation for the surface tension of the
lattice gas in three dimensions is given by

FIG. 3. Two absorption isotherm in the mean-field approxima-
tion for b=v /kbT=0.72 andb=0.9 sbc=2/3d and u/v=0.95. We
see that for low temperature the layer transitions are evident, but for
high temperature the isotherm is smooth.m is in unitsv andG is in
units of lattice spacing.

FIG. 4. The logarithm plot of the adsorption isotherm in mean-
field approximation forb=v /kbT=0.74, b=0.70, b=0.68, and
u/v=0.95. We see that in the asymptotic region the three adsorption
isotherms are well approximated by straight lines.m is in units ofv
andG is in units of lattice spacing.
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]s− bsQd
]Q

=
1

2
D2sQdlnf1 + FssQdasQdg, s43d

with QP f−1:1g and D2sQd is the two-dimensional density
of states(see Appendix A).

According to the discussion in Sec. II A, the factorgQsqd
in Eq. (42) is related to the Fourier transform of the first
derivative of the density profile. This definition, however,
cannot be stricltly carried over to lattice models where the
density profile is defined only on lattice sites. Instead, we
parametrizedgQszd in terms of a rigidly shifted mean-field
density profile,

gQszd = rQ8 sxd = rmf8 sz− lQd, s44d

where lQ is the (unknown) Q-dependent position of the in-
terface andrmfszd is an analytic interpolation of the mean
field ri obtained by fitting the discrete density profile with a
suitable continuum density profile:

rmfszd =
1

2
Fsa + bd + sa − bderfS z

j'

DG . s45d

This form does adequately represent the actual density pro-
file by takinga equal to the bulk density andb to the contact
density r1. The width j' of the interface is only weakly
dependent on the thermodynamic state and diverges logarith-
mically at wetting. As a first approximation we setj' inde-
pendent ofm. Instead, the position of the interfacelQ does
depend on the state and will be strongly renormalized by
fluctuations. In fact,lQ is easily related to the adsorptionGQ,
via the parametrization(44):

GQ =
]s− bsQd

]bm
=E

0

`

dzfrmfsz− lQd − rbg .
lQ
2

sr1 − rbd.

s46d

Note that, due to the parametrization(44), the value oflQ
drops out of the definition ofaQskd, Eq. (42), which then
becomesQ independent(see Appendix B). We parametrized
the surface correlation function by an OZ form,

Fs
Qskd =

rbs1 − rbd

UE dzrQ8 szdU2

f1 − lQaQskdg
, s47d

in terms of the unkown parameterlQ. When this expression
is substituted into Eq.(15) we get

DFQsz1,z2,kd = g̃Qsz1dg̃Qsz2d
rbs1 − rbd

1 − lQaQskd
, s48d

whereg̃Qszd=r8Qszd / uedz8r8Qsz8du. The first term of Eq.(48)
can be interpreted as a normalized function which constrains
the range of the correlation function to the interface—i.e.,
whererQ8 szd does not vanish. The factorrbs1−rbd guarantees
the correctrb→0 limit preserving the symmetry of the
model. The chosen form ofDFQ, Eq. (48), reproduces the
momentum dependence of the known random-phase ap-
proximation[23] in which aQskd plays the role of an effec-
tive interaction potential on the interface. The yet unknown

parameterlQ is determined via the surface compressibility
sum rule(24), valid for eachQ system. By use of the param-
etrization (47) in the sum rule(24) we obtain the explicit
relationship betweenlQ and the thermodynamics:

]2s− bsQd
]sbmd2 = UE dzrQ8 szdU2

Fssk = 0d =
rbs1 − rbd

1 − lQaQsk = 0d
.

s49d

Substituting the approximation ofFs
Qskd in the evolution

equation(43) we obtain a closed nonlinear partial differential
equation for the surface free energysQsmd at fixed tempera-
ture. The initial condition for this equation is given by the
mean-field theory. The boundary conditions are given at
coexistence—i.e.,m=mco where we assume that the surface
susceptibility diverges(wetting) and atm→−` which corre-
sponds to vanishing bulk density. The equation is written in
quasilinear form by a suitable change of variable shown in
Appendix B. The evolution equation is then solved by a
predictor-corrector algorithm[30].

In Fig. 5 we show the logarithm of the susceptibility ver-
sus the logarithm ofm−mco. Notice that the value ofxs at the
last point of the grid depends on the mesh spacing as can be
seen in Fig. 6. For this reason this value is not considered in

FIG. 5. The double-logarithm plot ofxs isotherm for b
=v /kbT=0.72 andu/v=0.95. We see that the effect of fluctuation is
a renormalization of the critical adsorption amplitude.

FIG. 6. The double-logarithmic plot of thexs isotherm forb
=v /kbT=0.70 andu/v=0.95 for two different numbers of mesh
points. We see that the number of mesh points—i.e., the grid
spacing—affects the value ofxs at the last point of the grid. The
line is only a guide to the eye.
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the following analysis. In the asymptotic region, close to the
coexistence curve, lnsxsd displays a linear behavior. We fit
our data with a linear relation: lnsxsd.a lnsm−mcod+b and
we obtaina=−1.040±0.001. This value is compatible with a
logarithmic divergence of the adsorption; i.e., the inclusion
of fluctuations does not modify divergence of the adsorption,
so, as predicted by RG approach, the critical exponent for
complete wetting remain mean-field-like even when we in-
troduce the fluctuations. The main effect of fluctuations in
the asymptotic region is rather a renormalization of the am-
plitude A; see Fig. 5. To estimate the value of the amplitude
we fit the HRT, results with lnsxsd=lnsA/Dmd=−lnsm−mcod
+ln A; see Fig. 7. We obtainA.0.62 which is larger than the
lattice mean-field resultA.0.45. In Fig. 8 we plot the sur-
face susceptibility for two different temperatures. The fluc-
tuations introduce a weak dependence of the critical ampli-
tude on the temperature, which is absent in the mean-field
results.

Using Eq.(39) and our numerical result forA, we obtain
vHRT.0.6 which is smaller than the RG estimation for the
Ising modelv.0.8 [12] and larger than the valuev.0.3
obtained from simulation results on critical exponents for
critical wetting[16]. However, our numerical estimate is ob-
tained at higher temperature:T.0.92Tc. The deficiencies of
the mean-field approximation prevents us from studying a
wide range of temperatures and so it is also difficult to ex-

tract from our results howv depends on temperature. How-
ever, our data seem to imply an increasing of the wetting
parameter forT→Tc (see Fig. 8).

IV. CONCLUSIONS

In this work we have presented an extension of the HRT
approach[2] to inhomogeneous systems and we applied the
formalism to the wetting transition in the three-dimensional
(3D) Ising model in planar geometry. The approach pre-
sented here is, to our knowledge, the firstmicroscopictheory
able to describe capillary wave fluctuations at the level of the
renormalization group approach. Its use is not restricted to
the study of wetting but more generally to the study of fluc-
tuations effects in nonhomogeneous systems. Differently
from the standard bulk HRT, we introduce a cylindrical cut-
off to take into account the anisotropic spectrum of the fluc-
tuations in such a reduced symmetry. We obtain a hierarchy
of evolution equations for the bulk properties which repro-
duces the known RG approach close to the bulk critical point
together with an additional hierarchy of differential equa-
tions for the surface free energy and the interfacial correla-
tions. This further hierarchy generally depends on bulk cor-
relation functions. In order to close the hierarchy at the
lowest level—i.e., keeping only the free energy
equations—we analyzed a simple Ornstein-Zernike ansatz
for both the bulk and interfacial correlations. Within this ap-
proximation, the resulting bulk critical exponents turn out to
be exact to first order ine=4−d and the surface free energy
equation is equivalent to the known functional RG approach
applied to the effective capillary-wave Hamiltonian[8–10].
To study the effects of fluctuations also in the nonasymptotic
region we investigated by the HRT approach the complete
wetting transition in a lattice gas model with nearest-
neighbor interactions(i.e., for the Ising model). In order to
simplify the analysis we introduced a further decoupling ap-
proximation which disregards the effects of bulk fluctuations
on surface quantities. The numerical results show an inter-
esting renormalization of the critical adsorption amplitude
which can be related to a renormalization of the wetting pa-
rameter. The HRT value of the wetting parameter isv.0.6
which is smaller the the field-theoretical estimate for this
model[12] but it is greater than simulation results for critical
exponents of the critical wetting transition[16] at lower tem-
perature. This can probably related to the increase of wetting
parameter forT→Tc. Notwithstanding the crudeness of
some approximation we introduced, the results for critical
and noncritical quantities compare quite favorably with
available simulation data. Clearly there is room for improve-
ment within the class of OZ closures of the HRT hierarchy.
In particular it would be interesting to allow for a renormal-
ization of the transverse correlation lengthj' which we kept
constant. The extension of this approach to different systems,
like off-lattice fluids or the Ising model in parallel-plate ge-
ometry, looks also promising.
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FIG. 7. The double-logarithm plot of thexs isotherm for b
=v /kbT=0.72 andu/v=0.95 in the asymptotic region. The line is
lnsxsd=−lnsm−mcod+ln A, with A=0.62.

FIG. 8. The double-logarithm plot of thexs isotherm for b
=v /kbT=0.70 andb=0.74; u/v=0.95. We see that the effects of
temperature on the critical amplitude are small. The lines are only a
guide to the eye.
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APPENDIX A

Consider a lattice system with nearest-neighbor interac-
tion

vi j = Hv,i, j , nearest-neighbors site,

0, otherwise.
J .

The Fourier transform of the dimensionless interparticle po-
tential is

fsq,kd = 4wbfg2skd + cossqdg,

wherew=−v.0 and

gdskd =
1

d
o
i=1

d

cosskid.

The Brillouin zone is defined by −p,ki øp and we
choose the cylindrical of the form[2,29]

fQsq,kd = Hfsk,qd, g2skd ø Q,

0, g2skd . Q,
J

with QP f−1,1g. The evolution equation for the surface ten-
sion of the lattice gas in three dimensions then becomes

]s− bsQd
]Q

=
1

2
D2sQdlnf1 + FssQdasQdg, sA1d

whereasQd is the value ofaQskd evaluated atg2skd=Q and
D2sQd is the two-dimensional density of states:

D2sQd =E d2k

s2pd2dsQ − g2skdd =
2

p2KsÎ1 − Q2d,

whereKsxd is complete elliptic integral of the first kind.

APPENDIX B

In this appendix we provide some detail on the algebraic
manipulations on Eq.(43) necessary for implementing an
efficient numerical algorithm. As a first step we give the
explicit form for the effective surface potential obtained by
substituting the parametrization discussed in the text for the
function gQszd, Eq. (14), into the definition ofaQskd, Eq.
(42). By use of the mean-field density profile(45), gQszd is
just a Gaussian function andaQskd is independent oflQ:

aQskd .
srb − r1d2

2p
E

−p

p

dqe−q2j'
2 /2fsk,qd

=
srb − r1d2

2p
E

−p

p

dqe−q2j'
2 /22bwfsd − 1dgskd + cossqdg

=
bwsr1 − rbd2fsd − 1dI1gskd + I2g

p
, sB1d

where

I1 =E
−p

p

dqe−q2j'
2 /2,

I2 =E
−p

p

dqe−q2j'
2 /2cossqd.

Now we introduce the shorthand notationf r =rbs1−rbd and
bQ=−bsQ. The surface susceptibility of theQ-system is eas-
ily expressed in terms ofbQ9 :

bQ9 = b2]2s− bsQd
]sbmd2 = b2 ]G

]bm
= bxs,

while the parameterlQ is given by Eq.(49). The evolution
equation(43) is written in quasilinear form by introducing
the new variablevQ defined by

vQ = lnf1 + PsQdg,

where

PsQd = FssQdasQd

=
bQ9 srb − r1d−2f ra0asQd

bQ9 „a0 − asQd… + f rb
2asQd

=
bQ9 f rrsQd

bQ9 msQd + f rb
2ãsQd

and

vQ = f rãsQd + ã2sQduQ,

where ãsQd=aQsQdsrb−r1d−2. By differentiating twice the
evolution equation(43) with respect to the chemical poten-
tial and substituting the definition ofvQ we get

]bQ9

]Q
=

1

2
D2sQd

]2vQ

]m2 .

Inverting v=vsbQ9 d we find

bQ9 = −
b2f rãsQdfev − 1g

fã0 − ãsQdgfev − 1g − f rã0ãsQd
.

Differentiating this relation with respect toQ we obtain

]bQ9

]Q
= −

]

]Q
S b2f rãsQdfevQ − 1g

fã0 − ãsQdgfevQ − 1g − f rã0ãsQd
D

=
b2f r

2ãsQd2ã0v̇QevQ − b2f rȧ̃ã0fevQ − 1g2

hmsqdfevQ − 1g − f rrj2 , sB2d

wherev̇Q=]vQ/]Q andv9=]2vQ/]m2. We now introduce the
notation

rsQd = ã0ãsQd

= Sb

p
D2

fsd − 1d2I1
2Q + I1I2sd − 1ds1 + Qd + I2

2g,

msQd = ã0 − ãsQd =
b

p
sd − 1dI1s1 − Qd,

which give ṙ =ã0ȧ̃ andṁ=−ȧ̃. By solving the algebraic Eq.
(B2) for v̇Q we obtain
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v̇Q =
ȧ̃

f rã
2sQd

fevQ − 1g2e−vQ +
D2sQde−vQ

2b2f r
2ã2sQdã0

3hmsQdfevQ − 1g − f rrj2vQ9 , sB3d

which is the evolution equation forvQ. Finally, by a further
change of variable, we introduceuQ by

f rãsQd + ãsQd2uQ = lnf1 + FssQdasQdg. sB4d

Switching from the chemical potential to the fugacityz
=ebsm−mcod we express the derivatives ofvQ in terms ofuQ:

v̇Q = f rȧ̃ + 2ãȧ̃uQ + ã2u̇Q,

vQ9 = ãf r9 + ã2uQ9

= ãb2Fz
]f r

]z
+ z2]2f r

]z2 G + ã2b2Fz
]uQ

]z
+ z2]2uQ

]z2 G .

Substituting these expressions into the evolution equation for

vQ, Eq. (B3), we obtain the quasilinear equation satisfied by
uQ:

]uQ

]Q
= L1 + L2 + M

]2u

]z2 , sB5d

with

L1 =
1

ã2F ȧ̃

f rã
2sevQ − 1d2e−vQ − f rȧ̃ − 2ãȧ̃uQG , sB6d

L2 =
D2sQde−vQ

2b2ã4sQdf r
2ã0

hmsQdfevQ − 1g − f rrj2

3Sãb2Fz
]f r

]z
+ z2]2f r

]z2 G + ã2b2z
]uQ

]z
D , sB7d

M =
D2sQde−vQ

2b2ã2sQdf r
2ã0

hmsQdfevQ − 1g − f rrj2b2z2. sB8d
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